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Abstract

We study the statistical properties of SIR epidemics in random networks, when an
epidemic is defined as only those SIR propagations that reach or exceed a minimum
size sc. Using percolation theory to calculate the average fractional size 〈MSIR〉
of an epidemic, we find that the strength of the spanning link percolation cluster
P∞ is an upper bound to 〈MSIR〉. For small values of sc, P∞ is no longer a good
approximation, and the average fractional size has to be computed directly. We find
that the choice of sc is generally (but not always) guided by the network structure
and the value of T of the disease in question, with a good choice being given by a
value slightly larger than typical size of the average maximum finite cluster. We
also study Q, the probability that an SIR propagation reaches the epidemic mass sc,
and find that it is well characterized by percolation theory. We apply our results to
real networks (DIMES and Tracerouter) to measure the consequences of the choice
sc on predictions of average outcome sizes of computer failure epidemics.
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The study of disease spread has seen renewed interest recently [1–3] due the
emergence of new infectious lethal diseases such as AIDS and SARS [4,5].
New tools, ranging from powerful computer models [6] to new conceptual
developments [1,8–12], have emerged in hopes of understanding and addressing
the problem effectively.
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Among the new tools that have become available to tackle infectious dis-
ease propagation, complex network theory [13,14] has seen considerable inter-
est [5,2], as a way to address the shortcomings of more classic approaches [4]
where all individuals in the population of interest are assumed to have an
equal probability to infect all other individuals (random-mixing). In contrast
to the random-mixing approach, complex networks (heterogenous mixing) as-
sume that each individual (represented by a node) has a defined set of contacts
(represented by links) to other specific individuals (called neighbors), and in-
fections can be propagated only through these contacts. This new technical
framework has produced novel insights that are expected to help considerably
in the fight against infectious diseases [10,5].

The use of complex network theory requires a few pieces of information in
order to be correctly applied. First, it is important to understand the kind of
disease being considered, as this will dictate the specifics of the network model
that needs to be used. For example, the flu virus usually spreads among peo-
ple that come in contact even briefly, leading to networks with exponential
distributions [7] or fat-tailed distributions of connections with large average
degree [6]. On the other hand, sexually transmitted diseases are better de-
scribed by more sparse, and fairly heterogeneous contact networks [4]. Thus,
these two examples easily illustrate one of the complications of the problem:
the structure of the network to be used. Other aspects involve the life cycle
of the pathogen, seasonality, etc. Additionally, social and practical aspects
involving public health policy and strategic planning play important roles in
the problem.

Regarding the issue of network structure, a few models have been proposed as
useful substrates for disease propagation. Among these, truncated scale-free
network structures [2] have received considerable interest [9,12]. In these net-
works, each node has a probability P (k) to have k links (degree k) connecting
to it, with P (k) being characterized by the form

P (k) =
[
k−λ exp(−k/κ)

]
/

[
Liλ(e

−1/κ)
]
, (1)

with k ≥ kmin, where kmin is the lowest degree that a node can have and κ
is an arbitrary degree cutoff reflecting the properties of the substrate network
for the disease [15]. The reason for including the exponential cutoff is two-fold:
first many real-world graphs appear to show this cutoff; second it makes the
distribution normalizable for all λ, and not just λ ≥ 2 [16].

Another important issue of propagation relates to the type of disease being
considered and its dynamics. In this sense, a general model for a number of dis-
eases (including the ones mentioned at the beginning) is the SIR model, which
separates the population into three groups: susceptible, infected and recovered
(or removed), approximating well the characteristics of many microparasitic
diseases [4]. The solution to the SIR model corresponds to the determination
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of the number of susceptible, infected, and recovered individuals at a given
time. Public health officials are particularly interested in the final outcome of
the disease propagation, measured through the number of individuals SSIR,
out of a population of N , that became infected at any time. Notice that SSIR

should not be confused with the number of susceptible individuals [17]. An-
other useful way to express the solution of the model is through the average
fraction of infected individuals 〈MSIR〉 = 〈SSIR/N〉, where 〈〉 denotes averages
over realizations.

A number of details related to SIR determine the methods that correctly yield
SSIR [9,12]. One common formulation of SIR assumes that on each time step,
an infected node has a probability β to infect any of its susceptible neighbors,
and once infected the node recovers in exactly tR time steps. This yields an
overall probability T , called the transmissibility, to use any given network
link of a node that becomes infected. For this case, when the networks have
very simple structure [18], 〈MSIR〉 can be determined using a mapping to the
link percolation model [3,2] of statistical physics [19] (see below). If the SIR
propagation details change, modified forms of percolation may be used [9,12].

From the standpoint of public health policy and strategic planning, an impor-
tant technical point is how to “define” what is considered to be an epidemic,
because such definition determines the level of reaction that health organiza-
tions (e.g., World Health Organization) will apply in dealing with a particular
infectious disease event. In real-world disease spread situations, as pointed out
in several references [2,9,12], epidemiologist are obliged to define a minimum
number of people infected, or threshold sc to distinguish between a so called
outbreak (a small number of individuals where no large intervention is called
for), and an epidemic (a significant number of individuals in the population
requiring large scale intervention). In Refs. [2,9,12], for instance, sc has been
used, but its impact on average predictions of SIR has not been systematically
addressed, even though it is representative of the sensitivity, or urgency, that
epidemiologist assign to the disease in question.

In this paper we address the importance of sc for SIR in complex networks.
Using link percolation, we first concentrate on calculating the average frac-
tion 〈MSIR(T, sc)〉 over SIR model realizations for which SSIR ≥ sc. This
quantity is important in the public health community to determine the av-
erage expectation value for the epidemic size that can arise given the par-
ticular pathogen and society affected, and the epidemic threshold sc chosen.
To calculate SIR through link percolation, we find that a reweighting pro-
cedure is necessary, that has been previously ignored. Once this reweighting
is done, 〈MSIR(T, sc)〉 for large sc (see below for a detailed discussion) ap-
proaches P∞(T ) ≡ P∞(N, T ), corresponding to the average fractional size of
the largest percolation cluster at T , but for sc smaller than a value that de-
pends on the topology of the network, we find that 〈MSIR(T, sc)〉 < P∞(T ),

3C
A

B
D

yN
 W

or
ki

ng
 P

ap
er

 #
20

08
-1

1-
00

8 
R

ec
ei

ve
d 

10
th

 N
ov

em
be

r 2
00

8



for Tc < T < 1,(Tc is the percolation threshold) indicating that the perco-
lation result for P∞ is an upper bound. Since the choice of sc determines what
is defined to be an epidemic, we also determine Q ≡ Q(T, sc), the probability
that an SIR realization reaches SSIR ≥ sc. Extending our results to situations
such as computer networks, where one should be able to declare an epidemic
even if few computers are infected due to the “similarity” of the world pop-
ulation of computers (i.e. sharing the same operating system), and thus have
large susceptibility, we find that similar results apply.

The rest of the article is structured as follows. Section 1 introduces details
of the network model and where it applies, the link percolation method used
to solve the SIR model, and the details of the reweighting procedure neces-
sary to obtain correct averages. Sections 2 and 3 introduce and explain the
results of the application of the model to disease propagation events in simu-
lated networks and real-world examples (computer networks). Finally, Sec. 4
summaries the results of the paper and presents our conclusions.

1 Models and algorithm

To construct networks of size N we use the Molloy-Reed algorithm or Con-
figurational model [20,21], and apply it to the degree distribution given by
Eq. (1). Simulations for this type of network have been performed before in
Refs. [2] and [9] for N = 104 and 105, λ = 2, kmin = 1, κ = 5, 10, 20 and
sc = 100 and 200 [23]. We perform our simulations for many values of κ but
we present our results only for κ = 10. Our main results also hold for other
degree distributions. Due to the fact that the lower degree is kmin = 1 [24] and
κ is small, the network is very fragmented and the size of the initial biggest
connected cluster (also know as the giant component abbreviated as GC),
labeled here as NGC , is typically 60% of the network (for κ = 10). In each
realization we build a new network and work only on the GC of the original
network because we are only concerned with the disease spread on connected
communities. Isolated clusters cannot propagate a disease.

To simulate SIR, we chose one node at random on the GC of the substrate
network, and infect it. Per time step, this infected node has a probability β
to infect its first neighbors. Once a neighbor has been infected, it can infect
any of its own susceptible neighbors, but it cannot be infected again nor infect
another already infected or recovered node. All infected nodes recover after
tR time steps of becoming infected [25]. The transmissibility T is the overall
probability that a node infects one of its susceptible neighbors within the
time frame t = 1 to tR, given by

∑tR
t=1 β(1− β)t−1 = 1− (1− β)tR . For every

realization of SIR, the total number of nodes that become infected after the
infectious transmission has ended is given by SSIR. The values of SSIR satisfy
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a distribution Φ(SSIR).

As mentioned in the introduction, another way to calculate SSIR is through
the use of link percolation. This is a process in which an initial network is
modified by removing a fraction 1−T of its links (we use T as the probability
for a link to be present because of the mapping between link percolation
and our SIR model). The effect of the removal is to generate a multitude of
clusters, each being a group of nodes that can be reached from each other
by following a sequence of edges connected to those nodes. Link percolation
has a threshold value T = Tc, characterized by the fact that, for T < Tc, the
size of the largest cluster typically scales as log N , and for T > Tc, a large
cluster emerges with a size that scales linearly with N , alongside a number of
small clusters. Thus, a so-called percolation transition occurs at T = Tc that
takes the network from disconnected to connected. In general terms, a similar
situation occurs in SIR, where a high likelihood of transmission of the disease
(large T ) between neighbors typically leads to a large epidemic, but if this
likelihood is low (small T ), only small localized outbreaks appear (a detailed
description of the relation is developed below).

To perform link percolation, we begin in the GC of the substrate network,
and randomly eliminate links with probability 1− T . Each realization of this
process yields multiple connected clusters of various sizes. Realizations are
then repeated multiple times, and a distribution of cluster sizes φ(Sp) emerges.
For the quantity P∞(N, T ) (which we henceforth abbreviate as P∞(T )), we
average the largest cluster size divided by NGC produced in each realization.

The relation between SIR and link percolation can be concretely explained in
the following way: each SIR realization begins with a randomly chosen node
of the GC, and the infection propagates to a set of nodes SSIR that can all be
traced back to the original infection. The links used in this SIR realization, on
average, where used with probability T and not used with probability 1− T .
To draw the correct connection to link percolation, we first must realize that
in a given realization of percolation, only one of the many connected clusters
can be chosen to represent the infection of SIR. By analogy with the classic
Leath algorithm [26] of cluster creation in percolation, we can conclude that
the clusters are randomly picked, with probability proportional to their size
Sp. Thus, one expects that the average size of SIR realizations is equivalent
to a weighted average of percolation realizations, where the weight is given by
Sp.

With the previous arguments in mind, and given the dependence of the prob-
lem on both T and sc, we compute 〈MSIR(T, sc)〉 through [27]

〈MSIR(T, sc)〉 =
∑

SSIR≥sc

SSIR

NGC

Φ(SSIR). (2)
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In order to compare this to link percolation, we perform a weighted average
to obtain 〈Mp(T, sc)〉, given by

〈Mp(T, sc)〉 =

∑
Sp≥sc

(S2
p/NGC) φ(Sp)∑

Sp≥sc
Sp φ(Sp)

. (3)

We expect that both averages converge to the same value when enough realiza-
tions are performed. Additionally, as sc is increased, we expect 〈Mp(T, sc À 1)〉 →
P∞(T ) for T > Tc, because a progressively smaller number of small clusters
enters into the averaging, and only the largest clusters are used. This creates
an interesting scenario, in which P∞(T ) is a good approximation of the epi-
demic size only in the limit of a large threshold sc ≥ S×p (a function of T only,
defined below). However, for smaller sc, which is important in more aggressive
diseases, only 〈Mp(T, sc)〉 is the correct average.

2 Results on the relative average size of the disease

2.1 Mapping between the average fraction size using SIR simulations and the
average fraction size of all percolation cluster

As a first step, we illustrate the equality of 〈MSIR(T, sc)〉 and 〈Mp(T, sc)〉
[9,12](Fig. 1) by plotting 〈MSIR(T, sc)〉 and 〈Mp(T, sc)〉. The two curves overlap
indicating that the mapping between the two quantities is correct. In the
remainder (unless explicitly stated), we perform our simulations using link
percolation as opposed to SIR.

The mapping between the steady state of SIR and link percolation is compu-
tationally very convenient for several reasons. First, performing simulations of
SIR models is computationally more costly than link percolation. This is due
to the fact that for SIR, only a single propagation occurs per realization, as op-
posed to multiple clusters that appear for link percolation. Additionally, SIR
propagation has to be performed in a dynamic fashion, which makes it neces-
sary to test over time a given propagation condition, something that does not
occur for link percolation, accelerating further the simulations. Finally, this
mapping is convenient because it gives another conceptual framework in which
to understand the relation between these two problems of disease propagation
and percolation models.

A final feature of Fig. 1 is the plot of P∞(T ). This curve displays good agree-
ment with 〈MSIR(T, sc)〉 for the larger sc. We discuss this issue further in the
next subsection.
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2.2 Effects of sc on SIR measures

In Fig. 2 a), we plot 〈Mp(T, sc)〉 to explore the effect of sc on this average. We
can see from the plot that only for larger sc (for our simulation parameters
≈ 200) the curves of P∞(T ) and 〈Mp(T, sc)〉 coincide for 1 ≥ T > Tc (Tc ≈ 0.34
for N = 105), while for smaller sc values they do not. The need to use large sc

to approach P∞(T ) had been realized previously (for instance [28,9]), but not
commented on in any detail. We can see this behavior more clearly in Fig. 2
b), where we plot P∞(T )− 〈Mp(T, sc)〉 for different values of sc and find that
P∞(T ) is an upper bound of 〈Mp(T, sc)〉, except for large sc (see Ref. [29],
and recall that by definition 〈Mp(T, sc)〉 ≥ sc, thus care must be taken not to
induce pathological situations by choosing sc larger than expected large SIR
events).

In order to understand these results systematically, we plot the distribution
φ(Sp) for two values of T (Fig. 3). From percolation theory it is known that, for
T just above Tc, φ(Sp) ∼ AS−τ

p exp(−Sp/S
×
p ) + F (Sp − S∞p ), where τ has the

mean field value 5/2. In the last expression, S×p is a characteristic maximum
finite cluster size which scales as |T − Tc|−σ (σ = 1/2), A is a measure of the
relative statistical weight between the two terms, F is a narrow function of its
argument, and S∞p = S∞p (T ) ≡ 〈NGC〉P∞(T ). The value of A can be estimated
from the fact that, for a system size 〈NGC〉, the first term of φ(Sp) accounts
for the finite clusters present, and the integral of Spφ(Sp) must be equal to
the mass of the finite clusters. Therefore

[〈NGC〉 − S∞p (T )] ∼ A
∫ 〈NGC〉

1
S−τ+1

p exp(−Sp/S
×
p )dSp

⇒ A ∼ (τ − 2)(〈NGC〉 − S∞p (T ))

1− (S×p )−τ+2
. (4)

Since the rest of the mass of the network is contained in a single spanning
cluster, then the relative statistical weight of the first to second term of φ(Sp)
is A : 1, justifying the choice of the integral of F to be 1. The overall nor-
malization can be obtained from the fact that

∫ 〈NGC〉
1 SpΦ(Sp)dSp = 〈NGC〉.

The effects shown here hold also for other networks including real networks as
shown below.

In general, since φ(Sp) = φ(Sp, T ), any choice of sc affects the value of
〈Mp(sc, T )〉 differently for different T . The choice sc = S×p (T = Tc) is gen-
erally convenient for any T ≥ Tc (although not perfect, as explained
below) if the goal is to have 〈Mp(sc, T )〉 → P∞(T ), which reflects an
averaging only over large SIR events. In case the disease in question has
T considerably larger than Tc, φ(Sp) is virtually bimodal, with a region of
extremely low probability between S×p (T ) and S∞p (T ) inside of which chang-
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ing sc has virtually no consequences. If sc < S×p (T ), 〈Mp(T, sc)〉 becomes the
average of this bimodal, but for S×p (T ) < sc < S∞p (T ), 〈Mp(sc, T )〉 is domi-
nated by the second part of the distribution producing a value that reflects
typical large SIR events only. Since the average of a bimodal lacks descrip-
tive power, this analysis suggests that for large T , S×p (T ) < sc < S∞p (T ) is a
good choice. On the other hand, in the case of T & Tc, φ(Sp) is a truncated
power-law and changes in sc induce changes in 〈Mp(T, sc)〉 continuously, thus
making the choice of sc less obvious. If the concern regarding a particular
disease is to activate epidemiological interventions quickly, a small value of
sc should be chosen related to practical considerations such as readiness of
the public health sector; if, however, the guiding principle is to analyze the
statistical features of large events, sc close to, or slightly larger than, S×p (T )
(sc & S×p (T )) guarantees averaging only over those. It is important to keep
in mind that the statistical weight of events of size S∞p (T ) becomes negligible
as T → Tc, making sc & S×p (T ) a choice that forces 〈Mp(T, sc)〉 to become
dominated by vanishingly improbable events. Finally, choosing sc & S∞p (T )
is, at best, an unsafe choice for transmissibility T or below because it forces
〈Mp(T, sc)〉 ≥ S∞p (T ), which is meaningless (see, for instance inset of Fig 2
b), where 〈Mp(T, sc)〉 > P∞(T ) for Tc & T ). In essence, our analysis suggests
that sc close to and above S×p (T ) is generally a good choice, unless special
considerations are present due to a particularly dangerous disease which, in
addition, satisfies T & Tc.

The choice of sc has an extra consequence, which is to change the likelihood
that a given pathogen propagation be declared as an epidemic. This proba-
bility is relevant from the standpoint of readiness, because lower sc implies
that it is more likely to consider almost any disease propagation as reaching
the epidemic state. Thus, we define Q which represents the probability that
an SIR with transmissibility T has size SSIR ≥ sc. This quantity can be com-
puted directly as the number of times SSIR ≥ sc divided by the total number
of realizations (See Fig. 4). Analytically, Q can be related to Φ(SSIR) through

Q =

∑
SSIR≥sc

Φ(SSIR)∑
SSIR≥1 Φ(SSIR)

=
∑

SSIR≥sc

Φ(SSIR), (5)

where the last equality is a consequence of normalization. In order to calculate
Q from the percolation results, we keep in mind the reweighting applied to
Eq. (3). Then, Q is given by

Q =

∑
Sp≥sc

Sp φ(Sp)∑
Sp≥1 Sp φ(Sp)

. (6)

where
∑

Sp≥1 Spφ(Sp) = 〈NGC〉. In Fig. 4, we plot Q for SIR for T = 0.4,
(T & Tc), using direct computation and compare it with the results obtained
using Eq. (6). We can see that the agreement is excellent.
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To calculate Q, we use φ(Sp) and Eq. (5), and assume the continuum limit
over Sp, giving

Q ∼
∫ 〈NGC〉

sc

Spφ(Sp)

〈NGC〉 dSp

∼
∫ 〈NGC〉

sc

[AS−τ+1
p exp(−Sp/S

×
p ) + SpF (Sp − S∞p )]

〈NGC〉 dSp

∼





A
s−τ+2
c −(S×p )−τ+2

〈NGC〉(τ−2)
+

S∞p
〈NGC〉 [sc ≤ S×p ]

S∞p
〈NGC〉 [S×p ¿ sc ≤ S∞p ]

0 [S∞p < sc],

(7)

where we approximated the first term of the integral by truncating the inte-
gration at S×p (T ), and simplifying F to a delta function (of integral 1, which
relates to the value of A). Several Q regimes can be identified: (i) for sc ¿ S×p ,
the contribution of (S×p )−τ+2 is negligible and therefore Q ∼ s−τ+2

c ; (ii) for
sc ∼ S×p , Q becomes dominated by a competition between the two terms of
the integral and no clear scaling rules apply; (iii) for S×p ¿ sc < S∞p , Q ∼ S∞p ,
and; (iv) for sc > S∞p , Q → 0. ¿From Fig. 4 we can identify those four regimes.
In the figure the arrow represents approximately S∞p /〈NGC〉 ≈ 0.12 from the
simulation. The agreement between the theoretical scaling (see Eq. (7)) and
the simulation is excellent.

3 Application to Tracerouter and DIMES networks

The results we have presented for our model of human infectious disease prop-
agation is applicable to other problems in the real world. This can be well
illustrated for computer networks in which information is being broadcasted.

One of the networks that describes the functional connectivity of the Internet
is the Tracerouter network, where the nodes are the routers and the links
are the connection between them that transport IP packets. The network, as
measured in Ref. [30], has N = 222934 nodes and L = 279510 links. This
network can be represented by a Scale-Free network with λ = 2.1 [30]. In
order to obtain information of the Internet connectivity, a software probe is
used called a Tracerouter tool, that sends IP packets on the Internet eliciting a
reply from the targeted host. By citing the information of the packets’ path to
the various destinations, a network of router adjacencies is build [31]. Here, the
SIR process can be understood as a router that has a random failure (Infected),
that can produce failures on neighbor nodes that are functional (Susceptible),
and these new nodes become infected. Thus, after certain time of router failure
the protocol disconnects the router from the network (Removed). The DIMES
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network [32] uses the same algorithm of searching as the Tracerouter network,
the nodes are Autonomous Systems (AS) and the links are the connections
between AS. The network has N = 20556 nodes and L = 62920 links. The
description of the SIR process over DIMES is the same as the one explained
before for the Tracerouter network.

In Figs. 5 and 6 we plot P∞(T ) and 〈Mp(T, sc)〉 for different values of sc

as a function of T . For sc = 500, for Tracerouter and sc = 100 for DIMES
network we can map this problem to P∞(T ) of link percolation. We can see
that the problem maps into 〈Mp(T, sc)〉 for any size of sc. We compute Q
for both networks, those result are plotted in Fig.7 a) and b) for Tracerouter
and DIMES networks, respectively. For DIMES, Tc → 0, and thus first region
cannot be seen [19]. On the other hand, if Tc is finite as in Tracerouter, Q has
the four regions described for model networks (see Eq. (7)).

4 Summary

We have shown that the choice of sc, the minimum SIR propagation size nec-
essary to declare an epidemic, has important consequences on epidemiological
predictions. Using percolation theory to calculate the average fractional size
〈MSIR(T, sc)〉 = 〈Mp(T, sc)〉 of an epidemic, we find that the strength of the
spanning link percolation cluster P∞(T ) is an upper bound to 〈MSIR(T, sc)〉,
provided sc does not exceed S∞p (T ), the typical size of finite clusters of link
percolation, where pathological results can appear. When sc is between S×p (T )
and S∞p (T ), P∞(T ) is a good approximation to 〈MSIR(T, sc)〉. For small val-
ues of sc, P∞ is no longer a good approximation, and the average fractional
size has to be computed directly. Our analysis suggests that for a given dis-
ease (of known T ) and social network, sc & S×p (T ) is generally a good choice,
unless T & Tc and the disease requires special considerations by authori-
ties. When, the goal is to have 〈Mp(sc, T )〉 → P∞(T ), which reflects
an averaging only over large SIR events, a convenient chose of sc is
sc = S×p (T = Tc). This chose allow as to be sure that for any T ≥ Tc the
goal is reached. We also study Q, the probability that an SIR propagation
reaches the epidemic mass sc, which has several interesting regimes including
one that scales as s−τ+2

c . We apply our results to real networks (DIMES and
Tracerouter) to measure the consequences of the choice sc on predictions of
average outcome sizes of computer failure epidemics.
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Fig. 1. Comparation between 〈MSIR(T, sc)〉 (2), 〈Mp(T, sc)〉 (©), and P∞(T ) of link
percolation (full line). Empty symbols correspond to sc = 100, and dotted symbols
to sc = 1. For the transmissibility in the SIR problem, we used β = 0.05 and a set
of values of the recovery tR to cover a wide range of T . All the simulations were
performed on the GC of networks with λ = 2 , κ = 10, kmin = 1, and averaged over
104 realizations.
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Fig. 2. a) Plot of 〈Mp(T, sc)〉 as a function of T , for sc = 200 (©), sc = 10(2)
and sc = 1 (+). The full line represents P∞(T ). The inset shows the details of
the main plot close to Tc ≈ 0.32, i.e, for T near the percolation threshold. We
can observe that the departure between P∞(T ) and 〈MSIR(T, sc)〉 is not negligible.
b)P∞ − 〈Mp(T, sc)〉 as a function of T , for sc = 1 (2), sc = 10(∗), sc = 50 (+)
and sc = 200(©). In the inset we plot the details of the main plot around Tc for
sc = 10 (dot dashed line), sc = 50 (dashed line) and sc = 200 (full line). We observe
that P∞(T ) is an upper bound for 〈Mp(T, sc)〉 [29]. In all the simulations we used
N = 105, λ = 2, κ = 10, kmin = 1 and the averages where done over 103 realizations
on the GC of networks of size ' 0.6N.
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Fig. 3. Distribution of cluster sizes φ(Sp) for T = 0.4 (©) and 0.5 (4, red color
online). The distribution has two regions in which there is significant statistical
weight. The first of the two corresponds to the presence of finite clusters, and the
second to large spanning clusters. As T increases the second region moves to the
right, concentrated around S∞p (T ), and the first region becomes smaller due to the
cutoff S×p (T ) moving to the left. This also signals the decay of statistical weight of
the first region and increase of the second. For T = 1, all the weight is concentrated
on the second region. In all the simulations we used N = 105, λ = 2, κ = 10,
kmin = 1 and the averages where done over 104 realizations on the GC of networks
of size ' 0.6N.
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Fig. 4. Plot of Q for: SIR as a measure of the number of times an SSIR ≥ sc divided
by the number of realizations (full line). Link percolation over all clusters as in
Eq .(6) (©). We observe that both curve are in good agreement. For small sc, Q
has a power-law decaying behavior with exponent τ−2 = 1/2. The arrow represents
approximately S∞p /〈NGC〉 ≈ 0.12 as predicted by the theoretical scaling.
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Fig. 5. Plot of 〈Mp(T, sc)〉 as a function of T , for the Tracerouter network that has
N = 222934, Links = 279510, P (k) ∼ k−λ with λ = 2.1, with sc = 1 (◦), sc = 2 (+)
and sc = 100 (2). The full line represents P∞(T ).
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Fig. 6. Plot of 〈Mp(T, sc)〉 as a function of T , for the DIMES network that has Scale
Free distribution with λ ≈ 2.15, N = 20556, Links = 62920, for sc = 1 (◦), sc = 10
(+) and sc = 500 (2). The full line represents P∞(T ).

18C
A

B
D

yN
 W

or
ki

ng
 P

ap
er

 #
20

08
-1

1-
00

8 
R

ec
ei

ve
d 

10
th

 N
ov

em
be

r 2
00

8



10
0

10
1

10
2

10
3

10
4

s
c

10
-3

10
-2

10
-1

10
0

Q

10
0

10
1

10
2

s
c

10
-4

10
-2

10
0

Q

Fig. 7. Q as a function of sc for: a) Tracerouter network, with T = 0.25 (©). b)
DIMES network, with T = 0.02 (©), the exponent of the decreasing power-law is
around 0.62, indicating that for this network τ ∼ 2.62.

19C
A

B
D

yN
 W

or
ki

ng
 P

ap
er

 #
20

08
-1

1-
00

8 
R

ec
ei

ve
d 

10
th

 N
ov

em
be

r 2
00

8




